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Abstract

Solid-particle impact interaction with material wall surfaces is a problem in many multiphase ¯ow
industrial devices. This interaction a�ected by ¯ows around curved surfaces (aerodynamic e�ects) is
analysed in this paper for generic wall geometry and carrier gas ¯ow. The focus of this paper is to
quantify the incidence and re¯ection of small (near-Stokesian) particles. Particle re¯ection threshold is
found, and depends on both particle Stokes number and carrier gas ¯ow near the wall surface. The
analytical results are illustrated and compared with the computational results for cylindrical wall
surfaces. The boundary layer theory is employed to predict the key model parameter. The analytical
prediction agrees well with the computational results. # 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Particle re¯ection threshold; Particle rebounding distance; Particle-wall interaction; Con®ned gas-particle
¯ow; CFD simulation; Multiphase ¯ow

1. Introduction

Interest in problem of ¯uid dynamics of multiphase systems has developed rapidly in recent
years. Situations that occur frequently are concerned with the motion of a gas or liquid which

contains a distribution of solid particles. Such situations are encountered in numerous
industrial applications. One of the important examples is the movement of dusty gas ¯ow in

coal combustion equipment and heat exchangers. For better understanding of the mechanism
of the erosive wear and the heat transfer through the wall of these devices, the dynamics of
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near-wall gas-particle ¯ow has been the focus of considerable research in the ®eld of
multiphase ¯ow.
There are basically two approaches commonly employed in the study of gas-particle ¯ow:

Eulerian and Lagrangian formulations. These approaches of modelling gas-particle ¯ow have
been reviewed in the literature (e.g. Elghobashi,1994). In the Lagrangian formulation, the
motion of individual solid particles is considered, and the particle trajectories are modelled.
The gas phase is considered as continuum. In the Eulerian formulation, both gas and
particulate ¯ows are treated as continua, and the phases are regarded as two interacting ¯uids.
This approach of modelling gas-particle ¯ow has attracted very strong attention of researchers,
since it makes the computation very economical.
However, some fundamental problems have to be addressed in developing Eulerian models.

The continuum hypothesis of the particulate phase in Eulerian formulation is validated by Tu
and Fletcher (1995a). The results of computational experiments by Tu and Fletcher (1995b)
show that the boundary conditions for the particulate phase in Eulerian modelling of gas-
particle ¯ow are not constant, and depend on the particle inertia. The ``no-slip'' boundary
conditions for the particulate phase is still valid for very low inertia particles, whereas for the
particles of higher inertia, a ``slip'' boundary conditions in the Eulerian formulation, however,
can arise for the particulate phase. This boundary problem is evidently associated with the
particle interaction with wall.
The study of the particle±wall interaction is signi®cant for further fundamental problems

involved in Eulerian formulation, such as the particle re¯ection phenomenon and the drag
correction due to re¯ected particles in wall-dominated multiphase ¯ow. This knowledge will
enhance our understanding of two technically-related issues: surface erosion of the wall
material by solid particle impact, and heat transfer in coal combustion equipment and heat
exchangers. The velocity of the incident particles impacting on the wall surface is needed for
predicting the velocity of the re¯ected particles if the restitution coe�cients are known.
Modi®ed heat transfer at the wall in combustion equipment and heat exchangers is associated
with the velocities of the incident and re¯ected particles.
Erosion of wall surface material by solid particle impact is a�ected by a large number of

parameters. One group of these is the characteristics of particle motion in the wall-dominated
¯ow, for example, particle incidence angles and particle inertia which is frequently expressed by
the particle Stokes number, St. These parameters are associated with the ¯ow of the carrier gas
phase near the wall surfaces. In the subsection ``Material versus ¯uid mechanics aspects of
erosion'' of a recent review, Humphrey (1990) stresses the controlling of particle erosion by
controlling particle motion in wall-dominated ¯ows. Two characteristic regimes of particle
behaviour with regard to the importance of particle±wall impact interaction may be
distinguished, based on the superposition between particle inertia and carrier gas ¯ow
(Sommerfeld, 1992):

. The motion of relatively small particles is controlled by ¯uid motion and turbulent
dispersion. The in¯uence of the particle±wall interaction is less important since the particles
promptly follow the carrier ¯uid.

. In the case of large particles, their motion is dominated by inertia. Such large particles
respond slowly to changes in the carrier ¯ow near the wall surface in con®ned ¯ows, so their
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motion may be considerably in¯uenced by inertia and wall interaction. The particles can
maintain their direction of motion for a long time after they rebound o� a wall, which could
result in the next collision with the opposite wall.

The boundary between these two regimes is, however, not quantitatively established as yet. The
motion of particles having a signi®cant inertia is also a�ected by gravity. At the transition
from the ®rst regime to the second regime, we expect that the gravity e�ect on the particle
deviation from the gas streamline is small compared with the aerodynamic e�ects. In this
paper, we investigate the aerodynamic e�ects due to the change of ¯ows from straight lines.
This problem was studied by Laitone (1979), who found that particles never impact with the
wall surface if their Stokes number is smaller than one-fourth. Below this threshold, particles
follow the carrier ¯uid in the wall-dominated ¯ow. Besides Laitone, other investigators (e.g.
Finnie, 1960; Tilly, 1979) have drawn speci®c attention to the importance of the ``aerodynamic
e�ect'' on the particle±wall interaction. These detailed analyses are based on speci®c geometry
of the wall surfaces and inviscid ¯ow of carrier gas. Laitone's analysis is limited by inviscid
plane stagnation ¯ow of the carrier gas phase.
In the present report, the behaviour of small particles in interaction with a wall is

analytically investigated for generic wall surface shapes and laminar ¯ow of the carrier gas,
which is assumed to be viscous in the boundary layer near the wall surface. We know that the
behaviour of two-phase solid±gas ¯ow in engineering practice is more complex. Study of such
a turbulent ¯ow is di�cult to perform by an analytical method and often requires a numerical
technique (e.g. Tu and Fletcher, 1995b). However, many solutions to more complex systems
often result from an improved qualitative understanding of the single and simple situations.
We use the Lagrangian approach of modelling gas±particle ¯ow, since it is a more fundamental
procedure to describe the particle±wall interaction process, and can yield the detailed physics
of the particle behaviour near the wall. Our analytical results indicate that the particle
re¯ection threshold is determined by, in addition to the particle inertia, the gas phase ¯ow
behaviour near the wall surface which, in turn, depends on the local wall surface geometry.

2. Assumptions

The main assumptions implied in this present study are as follows:

. The gas ¯ow is steady. The e�ect of gravity on particle motion is small compared with the
e�ect of the carrier gas ¯ow so that particles in the bulk phase follow the gas streamlines1.
Near the wall surface, particles deviate from the gas streamlines and impact on the wall
surface. Let this deposition occur at some distance H measured perpendicularly to the wall
surface. We assume that the local distances H are small compared with the characteristic

1 . This requires that the Froude number, Fr, which is de®ned in the context of this paper by Fr=(tp)
2g/L, is sig-

ni®cantly less than unity. Although we do not specify the smallness of this number we will expect it to be not
greater than 0.01.
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length of the system, L:

E � H=L� 1: �1�
. Molecular and surface forces, e.g. van der Waals forces, in the particle±wall interaction are
neglected. This assumption is reasonable for the particles of diameter not smaller than 1 mm.
For these particles, Brownian motion is negligible. Forces due to pressure gradient, Magnus
forces due to rotation, Sa�man (lift) forces and Basset forces are not considered. These
forces are expected to have a second-order e�ect compared with the primary e�ect of
aerodynamic drag (Sommerfeld, 1992).

. Particles are spherical and do not break down in their interaction with the wall surface. The
wall surface roughness is small compared with the particle size and does not signi®cantly
a�ect the wall±particle collision process.

3. Lagrangian description of particle motion near wall

Under the conditions assumed above, we can write the motion equation of particle near wall
in term of its position given by a vector R as follows:

m
d2R

dt2
� 6pZRp

�
Wÿ dR

dt

�
� f; �2�

where m is the particle mass; Z is the gas phase viscosity; W= W(R) and is the velocity of the
gas phase at position R; t is time; Rp is the particle radius.
We de®ne the following characteristic quantities:

1. The characteristic time of the particle motion is the relaxation time, tp, de®ned by:

tp �
2R2

pr

9Z
; �3�

where r is the particle density.
2. The characteristic time of the disturbed gas phase ¯ow, tg, is de®ned as the ratio of the

characteristic length of the system, L, to the undisturbed velocity, W1, of the gas phase
¯ow:

tg � L

W1
: �4�

On the basis of these two characteristics, the particle Stokes number is de®ned by:

St � tp
tg
� 2R2

pW1r
9LZ

: �5�

We can scale the dimensional variables in (2) as follows:
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r � R=L; �6�

t � t=tp; �7�

w �W=W1: �8�
In (2), f is the friction factor, which de®nes the deviation of the gas drag on particle from the
Stokes law, and is a function of the local particle slip Reynolds number:

f � 1� h�Rep � jwÿ �dr=dt�Stÿ1j�: �9�

Here, Rep=2RpW1r gas/Z and is the particle Reynolds number based on the gas far-®eld
¯ow velocity, W1. The product of this number and the local slip particle velocity is the local
particle Reynolds number. If the particle slip Reynolds number signi®cantly exceeds unity, the
most frequently used expression for function h on the right-hand side of (9) is given by:
h(x)=0.15x 0.687 (Schiller and Nauman, 1933). One can see that the deviation of the drag force
from the Stokes law is a�ected either by the particle Reynolds number based on undisturbed
gas velocity, or/and the local particle slip velocity. The Reynolds number of small particles is
smaller than unity, regardless of their local velocity in wall-dominated motion. For this reason,
we assume that f=1 and the particles obey the Stokes drag force law. This assumption should
be reasonable for small (near-Stokesian) particles (of the order of 10 mm diameter), which can
be observed on the basis of the particle slip velocity near the wall, given in the following
sections.

Equation (2) can be converted into dimensionless form by means of the scaled variables as:

d2r

dt2
� dr

dt
ÿ St � w � 0: �10�

The Stokes number given by (5) is an important parameter in the particle±wall interaction
analysis. It expresses the in¯uence of the particle inertia on its deviation from the gas phase
streamlines, when the gas phase ¯ow is forced to change its direction in a con®ned space. We
suppose that the deviation of the particles from the gas streamlines onto the wall begins at
some position ro. Since the gas ¯ow is assumed to be steady, we have from (10):�

dr

dt

�
r�ro
� St � wo�ro�: �11�

Let us assume that the particle reaches the wall at position rs, which is located away from the
wall surface by the particle radius. In the particle±wall interaction situation, the di�erence of
the scaled position vectors, rsÿro, of the deposited particles may satisfy the condition:

jrs ÿ roj � 1: �12�
Under this condition we may expand the velocity of gas ¯ow near the wall surface into
Taylor's series:

w � ws � �rÿ rs� � �T�s � � � � ; �13�
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where T is the diagonal tensor of grad(w). The subscript ``s`` describes the value of T calculated
at the position away from the wall surface by the particle radius. Inserting (13) into (10), we
have:

d2r

dt2
� dr

dt
ÿ �rÿ rs� � �T �sSt � wsSt: �14�

4. Solution

Since particle deposition satis®es (1), the wall-dominated motion of solid particles is a two-
dimensional problem, and can be described by using a local (scaled) coordinates (n, l). The
coordinate n is normal locally to the wall surface, and l tangent to it in the direction of the gas
¯ow far from the wall surface. The origin of these local coordinates is located at the position
where the particle reaches the wall surface, i.e. rs00. We denote by a the partial derivative of
the tangential velocity of gas ¯ow, wl, with respect to l at the local coordinate origin:

a �
�
@wl

@l

�
s

: �15�

It follows from the equation of continuity for the gas phase, div(w)=0, that the partial
derivative of the gas ¯ow velocity in the normal direction, wn, with respect to n at the origin is:

a � ÿ
�
@wn

@n

�
s

: �16�

The parameter a depends on the geometry of the wall surface, and may be positive on some
parts of the wall surface. At these locations, the magnitude of the velocity of the incident and
re¯ected particles, and the rates of erosion and heat transfer, are strongly a�ected. Our analysis
will be focused on these cases.
We have from (14):

d2n

dt2
� dn

dt
� n � St � a � wsn � St; �17�

d2l

dt2
� dl

dt
ÿ l � St � a � wsl � St; �18�

These di�erential equations are subjected to the initial conditions given by (11), which can be
transformed into nÿ l coordinates by:�

dn

dt

�
n�no
�
�
dl

dt

�
l�lo
� Stwo�no; lo� � St�won � wol� � St�ÿano � ws � alo � � � ��: �19�

Here, no and lo are the normal and tangent vectors of ro, respectively, and:
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no � E � H

L
� 1: �20�

The solutions of (17) and (18), subjected to the initial conditions given by (19) when t=0,
can be written in the generic formulas for particle velocity components in the n- and l-
directions as follows:

vn � 1

St

dn

dt
� won

�
cos�gt� � sin�gt�

2g

�
exp

�
ÿ t
2

�
; �21�

vl � 1

St

dl

dt
� wol

�
cos�bt� � sin�bt�

2b

�
exp

�
ÿ t
2

�
; �22�

where the parameters b and g depend on the particle Stokes number and the local partial
gradient of gas velocity near the wall surface:

b �
������������������
1� 4aSt
p

2
; �23�

g �
������������������
4aStÿ 1
p

2
: �24�

Unlike parameter b, parameter g can be zero or complex, and will signi®cantly a�ect the
particle velocity in interaction with the wall surface. If g=0, l'Hospital's rule indicates that the
term in square brackets in (21) is equal to (1+ t/2). If g is complex, employing Euler's
formula, we can express the particle velocity by (21) in terms of hyperbolic functions. The
result is summarised in Table 1.
The change of the particle velocity vn with n and g is schematically illustrated in Fig. 1.

While n is the normal distance to the particle centre, the magnitude of n+(wsn/a) gives the
normal distance to the wall surface. The ratio of this distance to E (=no) is the dimensionless
normal distance in the horizontal axis in Fig. 1. The dimensionless velocity in Fig. 1 is
expressed by the ratio of wn/w on. Results given in Fig. 1 show that particles asymptotically
approach the wall surface with zero velocity in the direction normal to the wall surface when
StR1/(4a). No re¯ection of the particles can be expected. We can expect that particle re¯ection
can occur if g is positive. The value g=0 is de®ned as the critical parameter gc, which depends
on the critical particle Stokes number, Stc, and the critical value of the local gradient of gas
velocity, ac.

5. Particle rebounding

The rebounding of solid particles after their impact on a wall surface is dictated by the
re¯ected normal velocity. Since we assume that the interaction energy due to surface forces
between the colliding particles and the wall surfaces is small compared with the particle kinetic
energy, the re¯ected normal velocity is determined by the incident normal velocity, vsn and the
restitution coe�cient in the normal direction, e n. The normal trajectory of a re¯ected particle
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Fig. 1. Normal velocities of particles deposited from gas streamlines in wall-dominated ¯ow. See the text for the
de®nition of the dimensionless coordinates.

Table 1
Particle trajectory and velocity in the normal direction, in dependence on its Stokes number and the local gradient

of the velocity of the gas phase at the wall surface

Particle Stokes number Particle trajectory and velocity in the normal direction

n�t� � ÿwsn

a
� no

�
cos�gt� � 1ÿ 4g2

4g
sin�gt�

�
exp

�
ÿ t
2

�

St >
1

4a vn�t� � won

�
cos�gt� � sin�gt�

2g

�
exp

�
ÿ t
2

�

n�t� � ÿwsn

a
� no

�
1� t

4

�
exp

�
ÿ t
2

�

St � 1

4a vn�t� � won

�
1� t

2

�
exp

�
ÿ t
2

�

n�t� � ÿwsn

a
� no

�
cosh�g 0t� � 1� 4g

02

4g 0
sinh�g 0t�

�
exp

�
ÿ t
2

�

St <
1

4a nn�t� � won

�
cosh�g 0t� � sinh�g 0t�

g 0

�
exp

�
ÿ t
2

�
; g 0 � ������ÿgp
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can be obtained in the form:

nr�t� � ÿwsn

a
� �C1 cos�gt� � C2 sin�gt�� exp

�
ÿ t
2

�
; �25�

where Ci (i=1, 2) are the integration constants. Employing the initial conditions: nr=0 and
dn/dt= ÿ e nvsnSt when t=0, yields:

nr�t� � ÿwsn

a
ÿ vsnenSt

sin�gt�
g

exp

�
ÿ t
2

�
: �26�

The velocity vsn can be predicted using (21) when n= 0. The corresponding time is denoted as
ts. We have:

sin�gts� � 4g
4g2 � 1

; �27�

cos�gts� � 4g2 ÿ 1

4g2 � 1
; �28�

vsn � won exp

�
ÿ ts

2

�
: �29�

Inserting these results into (26) yields:

nr�t� � ÿwsn

a
� noen

4g2 � 1

4g
sin�gt� exp

�
ÿ t� ts

2

�
: �30�

The normal velocity of the re¯ected particles can be predicted by:

vrn � 1

St

dnr
dt
� ÿwonen

�
cos�gt� ÿ sin�gt�

2g

�
exp

�
ÿ t� ts

2

�
: �31�

The change of the normal velocity of the re¯ected particles with the normal distance in
dependence on the dimensionless parameter g is graphically illustrated in Fig. 2. As expected,
no particle re¯ection occurs when g= gc=0. If g is greater than the critical value, the particle
rebounding occurs. We conclude at this point that the necessary and su�cient condition for
particle re¯ection threshold to occur is g=0, or equivalently acStc=1/4. Below this threshold
the non-slip condition can be applied similarly to the carrier gas ¯ow. A critical point is that
the condition of particle re¯ection threshold is not uniform along the wall surface, since it
depends on parameter a. For the inviscid plane stagnation ¯ow, wn= ÿ A�n, where A is a
positive constant, we have a= A. Setting A=1, we obtain Stc=1/4, which is exactly the
same as Laitone's result. Considering the inviscid ¯ow past a cylinder of radius R, we have
wn= ÿ [1ÿ(1+ n)ÿ2] cosy, where y is the polar angle measured from the stagnation point.
The corresponding a is given by a=2(1+ rp)

ÿ3 cosy, where rp is the particle radius made
dimensionless with the cylinder radius. Since the particle radius is usually smaller than the
cylinder radius, the distribution of the critical particle Stokes number over the cylindrical
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surface is described by Stc=1/(8 cosy), which at the stagnation point reduces to the well-
known value 1/8.
The rebounding distance corresponds to the maximum normal trajectory of the rebounded

particles, measured from the wall surface, which can be predicted by:

X � enE
4g2 � 1

4g
sin�gtm� exp

�
ÿ tm � ts

2

�
; �32�

where tm is the time at the maximum normal re¯ected trajectory, or zero normal re¯ected
velocity. We have:

sin�gtm� �
���������������
4g2

4g2 � 1

s
; �33�

cos�gtm� �
���������������

1

4g2 � 1

s
; �34�

Substituting these predictions into (32), we obtain:

X � enE

���������������
4g2 � 1

p
2

exp

�
arctan�2g� ÿ p

2g

�
: �35�

This prediction for the rebounding distance, based on the particle Stokes number and the local
gradient of gas velocity, is graphically illustrated in Fig. 3.

Fig. 2. Normal velocity of a particle re¯ected o� from a wall surface.
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If g approaches zero, the exponential term in (35) rapidly converges to zero. As a result, the
rebounding distance also converges to zero, no re¯ection occurs. This result is also consistent
with the threshold predicted above, on the basis of the incident and re¯ected particle velocity
behaviour.

6. Case study: single cylindrical tube surface

In the previous section, the inviscid gas ¯ow was used to demonstrate the distribution of the
particle re¯ection threshold over the cylindrical wall surface. Since this type of the wall surface
frequently occurs in the heat exchangers, we want to focus our attention on this wall surface.
Evidently, the inviscid ¯ow corresponds to motion of real carrier gas ¯ow far away from the
wall surfaces. The gas motion near the wall surface cannot be described in this limit, because
the non-slip boundary condition is not satis®ed. The wall-dominated gas ¯ow is viscous, and,
therefore, should be better described by the boundary layer approximation.
Since the particle radius is small compared with the cylinder radius, we may expand the

carrier gas velocity in the tangential direction into Taylor's series, as follows:

�wl�s � �wl�wall � rp

�
@wl

@n

�
wall

� r2p
2

�
@2wl

@n2

�
wall

� � � � �36�

Fig. 3. Rebounding distance in dependence on the particle Stokes number and the local partial derivative of carrier
gas velocity, a.
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The ®rst derivative in this equation is equal to the surface vorticity, x, of the gas phase ¯ow
(made dimensionless by dividing with the characteristic time of the gas phase):

x � �rot�w��wall � �@wl=@n�wall: �37�
The Navier±Stokes equations at the wall surface yield:�

@2wl

@n2

�
wall

� Re
d}

dy
; �38�

where } is the surface pressure made dimensionless by dividing with r gasW
2
1/2; and

Re=2RcW1r gas/Z, and is the Reynolds number of gas ¯ow past the tube with the radius Rc.
Inserting (38) and (37) into (36) one obtains:

�wl�s � rpx� 1

2
r2pRe

d}

dy
� � � � �39�

Both x and } can be determined by either the computational solution to the Navier±Stokes
equations or the boundary layer solution. These two solutions are given for the gas ¯ow of the
Reynolds numbers from 2000 to 105 in Fig. 4. The details of the computational solution will be
described in the next section. The boundary layer solution for the dimensionless surface

Fig. 4. Distribution of x/(2ZRe) and (}0ÿ}) on the surface of a single cylindrical tube. Solid curves describe the
boundary layer solutions. Filled circles and squares describe the computational solutions to the Navier±Stokes

equations (the mean values for di�erent Reynolds numbers) for x/(2ZRe) and (}0ÿ}), respectively.
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vorticity and surface pressure of gas ¯ow past a cylindrical tube can be found as:

x � 2
������
Re
p

yf1 �
X
i�1
�ÿ1�i �2i� 2�

�2i� 1�! y
2i�1f2i�1

( )
; �40�

} � }0 ÿ 2 sin2 y: �41�
Here, f 2i+1 are the wall surface values of the second derivatives of the functional coe�cients
in the Blasius series; }0 is the surface pressure } at the stagnation point. The numerical
solution to di�erential equations for the coe�cients of the Blasius series, indicates that the ®rst
nine terms of the Blasius series are su�cient to exactly describe the boundary layer ¯ow past a
cylindrical tube. The results graphically illustrated in Fig. 4 show a good agreement between
the boundary layer solution and the computational solution to the Navier±Stokes equations.
Our interest is the gas ¯ow in the windward side of the obstruction where particle re¯ection
occurs. In this case, results in Fig. 4 for surface vorticity can be simply approximated by the
following expression:

x � 2
������
Re
p
�0:342 sin y� 0:595 sin 2yÿ 0:118 sin 3y�: �42�

Inserting (41) and (42) into (39), yields:

a � rp
������
Re
p
f0:684 cos y� 2:380 cos 2yÿ 0:708 cos 3yg ÿ 2r2pRe cos 2y� � � � �43�

We shall now estimate the error of our prediction given by (43). We can rewrite r 2pRe by
means of the particle Reynolds number by rpRep and, thus, the order of the cut-o� terms in
(43) is O[(rpRep)

3/2]. The order of the particle scaled radius, rp, and of the particle Reynolds
number, Rep, is 10

ÿ4 and 1, respectively. Consequently, the order of the cut-o� terms in (43) is
10ÿ6. Our prediction given by (43) is su�ciently accurate and can be also written as:

a � ������������
rpRep

p f0:684 cos y� 2:380 cos 2yÿ 0:708 cos 3yg ÿ 2rpRep cos 2y�O��rpRep�3=2�: �44�

7. Comparison with computational results

The commercial CFD code, FLUENT, is used for the simulation of the gas±particle ¯ow
past a single cylindrical tube. FLUENT solves the governing equations of the gas ¯ow using a
®nite-volume method on a non-orthogonal, curvilinear coordinate grid system with a
collocated variable arrangement. Pressure/velocity coupling is achieved by the SIMPLEC
algorithm, resulting in a set of algebraic equations which are solved using a line-by-line
tridiagonal matrix algorithm. The Langrangian formulation of particle motion given by (2) is
solved via an advanced Runge±Kutta method to predict particle velocities and trajectories once
the gas ¯ow ®eld is obtained. The drag correction factor f is a function of the particle slip
Reynolds number of the general form by Morsi and Alexander (1972). The particle trajectory
equations are solved by step-wise integration over discrete time steps. During the integration,
the gas velocities are calculated from the stored cell-centre velocity using a Taylor expansion.
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Upon striking a wall surface, the particle is forced to rebound according to prescribed
restitution coe�cients. The restitution coe�cients are considered to be 1 in this present paper.
Particle fragmentation and particle rotation are not considered. More detailed descriptions of
the Eulerian±Langrangian method are provided from the FLUENT User's Guide manual
(1996).
Two tube diameters, 0.5 and 1 m are considered in our computational simulation. The gas

velocity at the inlet is from 5 to 15 m/s. Two material densities 1500 and 2500 kg/m3 of solid
particles are investigated. The particle diameter changes from 10 to 100 mm. As can be seen
later, a good agreement between our prediction and the computational data is observed for
these near-Stokesian particles. It may indicate that the assumption f=1 made in our theory
may be reasonable for the analysis of the transition of the particle interaction with the
obstruction wall from the inertialess regime to the inertial one.
When particles approach the tube wall surface, they may not impact and/or re¯ect from the

wall surface. This is controlled by the particle inertia (the particle Stokes number) and the gas
¯ow, as is shown in our analysis in the previous section. Particles with a small Stokes number
do not collide with the wall surface. For an intermediate Stokes number, particles impact the
wall surface and are then re¯ected a certain distance away from the wall, but only at some
locations. This is because the impact and the re¯ection are strongly controlled by the local gas
¯ow at the impact/re¯ection point. The computational simulation indicates that beyond some
polar angle, some particles of a given Stokes number cannot re¯ect, although they approach
the surface. The re¯ection threshold occurs. In Fig. 5, parameter a expressed by (44) is plotted

Fig. 5. Threshold of particle re¯ection as a function of particle Stokes numbers and the local gas ¯ow parameter, a.

Prediction is given by solid line (4Stcac=1). Points describe the data when the re¯ection is computationally
detected. As expected, no re¯ection occurs in the domain below the analytically predicted threshold.
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against the Stokes number for the particles which re¯ect o� from the wall surface. All points
lie over the curve of the theoretically predicted threshold. This result substantially di�ers from
Laitone's theory based on inviscid plane stagnation ¯ow, which predicts the threshold by
Stc=1/4.
When particle re¯ection occurs, the particle rebounding and deposition distances (X and E)

are determined. The ratios of these distances are plotted against the theoretical prediction given
by (35). Parameter a is calculated by (44). Fig. 6 shows an example of the particle±wall
rebounding distances, X/E, as a function of the particle Stokes number and the location of
particle re¯ection when the restitution coe�cients are assumed to be 1. Good agreement
between the prediction and computational results is observed for particle Stokes numbers up to
4. Our theoretical and computational results in Fig. 6 clearly demonstrate that rebounding
distances depend not only on the particle Stokes number, but also on local gas ¯ow. It can be
seen that the scaled rebounding distance is considerably increased with an increase of the
particle diameter (the particle Stokes number). The particles rebound a shorter distance when
the polar angle of the impact/re¯ection points is increased, i.e. when the impact/re¯ection
points move away from the stagnation point and parameter a de®ned by (15) or (16) becomes
smaller.

Fig. 6. Comparison between the analytical prediction and the computational results for rebounding distances. The
gas velocity at inlet is 10 m/s. The diameter of the single tube is 0.5 m. The diameter of the solid particles is 100 mm
(®lled circles) and 80 mm (®lled squares), respectively. The material density of solid particles is 1500 kg/m3. Particles
of 60 mm diameter impact the tube surface around the stagnation point, but their rebounding distances are
signi®cantly small compared with that of, for example, particles of 80 mm diameter.

A.V. Nguyen, C.A.J. Fletcher / International Journal of Multiphase Flow 25 (1999) 139±154 153



8. Conclusion

The particle±wall surface interaction is analytically and computationally investigated in this
present paper. A universal model for re¯ection threshold and rebounding distance is obtained.
An application of the model to a cylindrical tube surface is illustrated. The boundary layer
theory is employed to predict the key parameter of the suggested model. The analytical
predictions agree with the computational results and show that impact and re¯ection of solid
particles depends not only on the particle Stokes numbers, but also on the local gas ¯ow at the
impact/re¯ection points. This study illustrates the value of analytical approach for investigating
particle motion in the wall-dominated gas±particle ¯ow. Such an approach yields very detailed
information about particle velocities in its interaction with a wall surface, which will be useful
for predicting surface material erosion. Our results show that the particulate ¯ow near the wall
surface is signi®cantly a�ected by the particle±wall collision process. This fact should be taken
into consideration in developing an Eulerian±Eulerian multiphase ¯ow model, which will
predict the mean particulate behaviour near the wall surface correctly.
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